Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review

Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review

Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review 1 2 * Information 2023 , 14 (12), 664; https://doi.org/10.3390/info14120664 (registering DOI) Abstract : 1. Introduction 2. Materials and Methods 3. Results 3.1. Descriptive and Scientometric Analysis of Records 3.1.1. Most Frequent Sources 3.1.2. Bradford’s Law 3.1.3. Lotka’s Law 3.1.4. The Most Relevant Countries by Corresponding Authors 3.2. Literature Clustering Cluster-Based Literature Table is the mean distance between a sample and all other points in the same class; is the mean distance between a sample and all other points in the next nearest cluster. is the between-group dispersion matrix and its trace; is the within-cluster dispersion matrix and its trace; is the number of points, and is the number of clusters. is the number of clusters; is the average distance of all points in cluster to the centroic of cluster ; is the distance between centroids and . 4. Discussion 4.1. AI/ML Algorithms Cluster Examination of the long-term impacts of AI and machine learning on consumer trust across diverse cultural contexts. Advanced machine learning techniques for real-time hyper-personalization in both online and physical retail environments. Comparative studies on the effectiveness of different AI algorithms in predictive analytics for various marketing domains. 4.2. Social Media Cluster Examination of the evolving role of AI in managing and interpreting complex social media data for personalized marketing. Analysis of the effectiveness of AI-driven advertisements on different social media platforms and their impact on consumer behavior. Ethical implications and privacy concerns of AI in social media marketing, with a focus on user personality prediction and behavior analysis. 4.3. Consumer Behavior Cluster The integration of virtual agents in retail and service industries and their impact on consumer relationship building. The effectiveness of decision trees and genetic algorithms in predicting consumer behavior across digital and physical shopping platforms. Analysis of the role of AI in influencing consumer perceptions and decision-making in e-commerce settings. 4.4. E-Commerce Cluster Development of sophisticated AI-driven chatbots for enhancing customer experience in e-commerce. Impact of conversational AI on customer service and sales in industries like banking and hospitality. Challenges and opportunities in implementing AI technologies in e-commerce, particularly in privacy and security aspects. 4.5. Digital Advertising Cluster Examination of the effectiveness of AI in creating and delivering personalized advertisements through emerging channels like smart speakers. Ethical considerations and consumer attitudes toward AI in advertising, particularly in voice and data mining. The role of AI in combating challenges such as click fraud in online advertising. 4.6. Optimization and Budget Control Development of AI algorithms for more efficient real-time bidding and ad allocation in digital advertising. Potential of AI in predictive budget allocation and its impact on marketing campaign performance. Integration of AI in optimizing marketing strategies across various digital platforms. 4.7. Competitive Strategies Cluster The role of AI in innovative e-commerce marketing models and market segmentation strategies. The impact of AI on the development of marketing strategies in specific sectors like retail. The challenges and opportunities in adopting AI for strategic marketing decisions, particularly in the B2B context. 5. Conclusions Author Contributions Funding Data Availability Statement Conflicts of Interest Appendix A SO Rank Freq cumFreq Zone Journal of Business Research 1 10 10 Zone 1 Applied Marketing Analytics 2 9 19 Zone 1 Journal of Retailing and Consumer Services 3 7 26 Zone 1 Industrial Marketing Management 4 6 32 Zone 1 Australasian Marketing Journal 5 5 37 Zone 1 Journal of the Academy of Marketing Science 6 5 42 Zone 1 Psychology and Marketing 7 5 47 Zone 1 European Journal of Marketing 8 3 50 Zone 1 IEEE Access 9 3 53 Zone 1 International Journal of Information Management 10 3 56 Zone 1 International Journal of Research In Marketing 11 3 59 Zone 1 Journal of Brand Strategy 12 3 62 Zone 1 Journal of Interactive Marketing 13 3 65 Zone 1 Journal of Product and Brand Management 14 3 68 Zone 1 Journal of Research in Interactive Marketing 15 3 71 Zone 1 Mobile Information Systems 16 3 74 Zone 2 Sustainability 17 3 77 Zone 2 Technological Forecasting and Social Change 18 3 80 Zone 2 Electronic Commerce Research and Applications 19 2 82 Zone 2 Frontiers in Psychology 20 2 84 Zone 2 Information Processing and Management 21 2 86 Zone 2 Information Systems Frontiers 22 2 88 Zone 2 International Journal of Computational Intelligence Systems 23 2 90 Zone 2 International Journal of Emerging Markets 24 2 92 Zone 2 International Journal of Engineering And Advanced Technology 25 2 94 Zone 2 International Journal of Market Research 26 2 96 Zone 2 Journal of Brand Management 27 2 98 Zone 2 Journal of Business Ethics 28 2 100 Zone 2 Journal of Marketing 29 2 102 Zone 2 Journal of Marketing Theory And Practice 30 2 104 Zone 2 Journal of Services Marketing 31 2 106 Zone 2 Scientific Programming 32 2 108 Zone 2 Security and Communication Networks 33 2 110 Zone 2 Advances in Distributed Computing and Artificial Intelligence Journal 34 1 111 Zone 2 ARPN Journal of Engineering And Applied Sciences 35 1 112 Zone 2 Artificial Intelligence Review 36 1 113 Zone 2 Bottom Line 37 1 114 Zone 2 Business: Theory and Practice 38 1 115 Zone 2 California Management Review 39 1 116 Zone 2 Central European Business Review 40 1 117 Zone 2 Computational Intelligence and Neuroscience 41 1 118 Zone 2 Computer Speech and Language 42 1 119 Zone 2 Computers 43 1 120 Zone 2 Computers and Electrical Engineering 44 1 121 Zone 2 Computers and Industrial Engineering 45 1 122 Zone 2 Decision Support Systems 46 1 123 Zone 2 Designs 47 1 124 Zone 2 Eastern-European Journal of Enterprise Technologies 48 1 125 Zone 2 Egyptian Informatics Journal 49 1 126 Zone 2 Electronic Commerce Research 50 1 127 Zone 2 Electronics 51 1 128 Zone 2 Emerging Science Journal 52 1 129 Zone 2 Engineering Applications of Artificial Intelligence 53 1 130 Zone 2 European Journal of Operational Research 54 1 131 Zone 2 Expert Systems with Applications 55 1 132 Zone 2 F1000Research 56 1 133 Zone 2 Foresight 57 1 134 Zone 2 Foundations and Trends in Marketing 58 1 135 Zone 2 Fujitsu Scientific and Technical Journal 59 1 136 Zone 2 Humanities and Social Sciences Communications 60 1 137 Zone 2 IAES International Journal of Artificial Intelligence 61 1 138 Zone 2 IEEE Intelligent Systems 62 1 139 Zone 2 IEEE Transactions on Computational Social Systems 63 1 140 Zone 2 IEEE Transactions on Engineering Management 64 1 141 Zone 2 IEEE Transactions on Neural Networks and Learning Systems 65 1 142 Zone 2 Industrial Management And Data Systems 66 1 143 Zone 3 Informatics 67 1 144 Zone 3 Information Sciences Letters 68 1 145 Zone 3 Informatologia 69 1 146 Zone 3 Innovative Marketing 70 1 147 Zone 3 Intelligent Automation and Soft Computing 71 1 148 Zone 3 Intelligent Systems with Applications 72 1 149 Zone 3 International Journal of Advanced Computer Science and Applications 73 1 150 Zone 3 International Journal of Advanced Trends in Computer Science and Engineering 74 1 151 Zone 3 International Journal of Advances in Soft Computing and its Applications 75 1 152 Zone 3 International Journal of Advertising 76 1 153 Zone 3 International Journal of Computer Information Systems and Industrial Management Applications 77 1 154 Zone 3 International Journal of E-business Research 78 1 155 Zone 3 International Journal of Electronic Business 79 1 156 Zone 3 International Journal of Electronic Customer Relationship Management 80 1 157 Zone 3 International Journal of Engineering Trends and Technology 81 1 158 Zone 3 International Journal of Hospitality Management 82 1 159 Zone 3 International Journal of Human-computer Interaction 83 1 160 Zone 3 International Journal of Information Management Data Insights 84 1 161 Zone 3 International Journal of Innovative Technology and Exploring Engineering 85 1 162 Zone 3 International Journal of Recent Technology and Engineering 86 1 163 Zone 3 International Journal of Retail and Distribution Management 87 1 164 Zone 3 Journal of Advertising 88 1 165 Zone 3 Journal of Ambient Intelligence and Smart Environments 89 1 166 Zone 3 Journal of Business and Industrial Marketing 90 1 167 Zone 3 Journal of Computational Methods in Sciences and Engineering 91 1 168 Zone 3 Journal of Consumer Behaviour 92 1 169 Zone 3 Journal of Consumer Marketing 93 1 170 Zone 3 Journal of Content, Community and Communication 94 1 171 Zone 3 Journal of Enterprise Information Management 95 1 172 Zone 3 Journal of Entrepreneurship in Emerging Economies 96 1 173 Zone 3 Journal of Financial Services Marketing 97 1 174 Zone 3 Journal of Global Information Management 98 1 175 Zone 3 Journal of Global Scholars of Marketing Science: Bridging Asia and The World 99 1 176 Zone 3 Journal of Hospitality and Tourism Technology 100 1 177 Zone 3 Journal of Industrial Engineering and Engineering Management 101 1 178 Zone 3 Journal of Marketing Analytics 102 1 179 Zone 3 Journal of Metaverse 103 1 180 Zone 3 Journal of Organizational and End User Computing 104 1 181 Zone 3 Journal of Retailing 105 1 182 Zone 3 Journal of Sensors 106 1 183 Zone 3 Journal of Service Management 107 1 184 Zone 3 Journal of Strategic Marketing 108 1 185 Zone 3 Journal of Supercomputing 109 1 186 Zone 3 Journal of Telecommunication, Electronic and Computer Engineering 110 1 187 Zone 3 Journal of The Association for Information Science and Technology 111 1 188 Zone 3 Journal of The Knowledge Economy 112 1 189 Zone 3 Journal of Theoretical and Applied Electronic Commerce Research 113 1 190 Zone 3 KSII Transactions on Internet and Information Systems 114 1 191 Zone 3 Lecture Notes on Data Engineering and Communications Technologies 115 1 192 Zone 3 Management Decision 116 1 193 Zone 3 Materials Today: Proceedings 117 1 194 Zone 3 NEC Technical Journal 118 1 195 Zone 3 Network Security 119 1 196 Zone 3 Neural Network World 120 1 197 Zone 3 Qualitative Market Research 121 1 198 Zone 3 Research Technology Management 122 1 199 Zone 3 SAGE Open 123 1 200 Zone 3 Singapore Economic Review 124 1 201 Zone 3 Spanish Journal of Marketing—Esic 125 1 202 Zone 3 Studies in Computational Intelligence 126 1 203 Zone 3 Systems Research and Behavioral Science 127 1 204 Zone 3 Technology Analysis and Strategic Management 128 1 205 Zone 3 Telematics and Informatics 129 1 206 Zone 3 TEM Journal 130 1 207 Zone 3 TQM Journal 131 1 208 Zone 3 Uncertain Supply Chain Management 132 1 209 Zone 3 Wireless Communications and Mobile Computing 133 1 210 Zone 3 World Journal of Entrepreneurship, Management and Sustainable Development 134 1 211 Zone 3 References Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the Future of Digital and Social Media Marketing Research: Perspectives and Research Propositions. Int. J. Inf. Manag. 2021 , 59, 102168. [Google Scholar] [CrossRef] Chintalapati, S.; Pandey, S.K. Artificial Intelligence in Marketing: A Systematic Literature Review. Int. J. Mark. Res. 2022 , 64, 38–68. [Google Scholar] [CrossRef] Verma, S.; Sharma, R.; Deb, S.; Maitra, D. Artificial Intelligence in Marketing: Systematic Review and Future Research Direction. Int. J. Inf. Manag. Data Insights 2021 , 1, 100002. [Google Scholar] [CrossRef] Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Syst. Rev. 2021 , 10, 89. [Google Scholar] [CrossRef] [PubMed] Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017 , 11, 959–975. [Google Scholar] [CrossRef] Ünlü, R.; Xanthopoulos, P. Estimating the Number of Clusters in a Dataset via Consensus Clustering. Expert Syst. Appl. 2019 , 125, 33–39. [Google Scholar] [CrossRef] Caliński, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat. 1974 , 3, 1–27. [Google Scholar] [CrossRef] Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979 , PAMI-1, 224–227. [Google Scholar] [CrossRef] Çalı, S.; Balaman, Ş.Y. Improved Decisions for Marketing, Supply and Purchasing: Mining Big Data through an Integration of Sentiment Analysis and Intuitionistic Fuzzy Multi Criteria Assessment. Comput. Ind. Eng. 2019 , 129, 315–332. [Google Scholar] [CrossRef] Toader, D.-C.; Boca, G.; Toader, R.; Măcelaru, M.; Toader, C.; Ighian, D.; Rădulescu, A.T. The Effect of Social Presence and Chatbot Errors on Trust. Sustainability 2020 , 12, 256. [Google Scholar] [CrossRef] Micu, A.; Capatina, A.; Cristea, D.S.; Munteanu, D.; Micu, A.-E.; Sarpe, D.A. Assessing an On-Site Customer Profiling and Hyper-Personalization System Prototype Based on a Deep Learning Approach. Technol. Forecast. Soc. Chang. 2022 , 174. [Google Scholar] [CrossRef] Yang, X.; Li, H.; Ni, L.; Li, T. Application of Artificial Intelligence in Precision Marketing. J. Organ. End User Comput. 2021 , 33, 1–27. [Google Scholar] [CrossRef] Yin, J.; Qiu, X. Ai Technology and Online Purchase Intention: Structural Equation Model Based on Perceived Value. Sustainability 2021 , 13, 5671. [Google Scholar] [CrossRef] Martínez, A.; Schmuck, C.; Pereverzyev, S.; Pirker, C.; Haltmeier, M. A Machine Learning Framework for Customer Purchase Prediction in the Non-Contractual Setting. Eur. J. Oper. Res. 2020 , 281, 588–596. [Google Scholar] [CrossRef] Han, R.; Lam, H.K.S.; Zhan, Y.; Wang, Y.; Dwivedi, Y.K.; Tan, K.H. Artificial Intelligence in Business-to-Business Marketing: A Bibliometric Analysis of Current Research Status, Development and Future Directions. Ind. Manag. Data Syst. 2021 , 121, 2467–2497. [Google Scholar] [CrossRef] Olan, F.; Suklan, J.; Arakpogun, E.O.; Robson, A. Advancing Consumer Behavior: The Role of Artificial Intelligence Technologies and Knowledge Sharing. IEEE Trans. Eng. Manag. 2021 , 1–13. [Google Scholar] [CrossRef] Sarath Kumar Boddu, R.; Santoki, A.A.; Khurana, S.; Vitthal Koli, P.; Rai, R.; Agrawal, A. An Analysis to Understand the Role of Machine Learning, Robotics and Artificial Intelligence in Digital Marketing. Mater. Today Proc. 2022 , 56, 2288–2292. [Google Scholar] [CrossRef] Villegas-Ch, W.; Erazo, D.M.; Ortiz-Garces, I.; Gaibor-Naranjo, W.; Palacios-Pacheco, X. Artificial Intelligence Model for the Identification of the Personality of Twitter Users through the Analysis of Their Behavior in the Social Network. Electronics 2022 , 11, 3811. [Google Scholar] [CrossRef] Aguilar, J.; Garcia, G. An Adaptive Intelligent Management System of Advertising for Social Networks: A Case Study of Facebook. IEEE Trans. Comput. Soc. Syst. 2018 , 5, 20–32. [Google Scholar] [CrossRef] Argan, M.; Dinc, H.; Kaya, S.; Argan, M.T. Artificial Intelligence (AI) in Advertising: Understanding and Schematizing the Behaviors of Social Media Users. Adv. Distrib. Comput. Artif. Intell. J. 2022 , 11, 331–348. [Google Scholar] [CrossRef] Cutler, J.; Culotta, A. Using Weak Supervision to Scale the Development of Machine-Learning Models for Social Media-Based Marketing Research. Appl. Mark. Anal. 2019 , 5, 159–169. [Google Scholar] Perakakis, E.; Mastorakis, G.; Kopanakis, I. Social Media Monitoring: An Innovative Intelligent Approach. Designs 2019 , 3, 24. [Google Scholar] [CrossRef] Basri, W. Examining the Impact of Artificial Intelligence (Ai)-Assisted Social Media Marketing on the Performance of Small and Medium Enterprises: Toward Effective Business Management in the Saudi Arabian Context. Int. J. Comput. Intell. Syst. 2020 , 13, 142–152. [Google Scholar] [CrossRef] Tzafilkou, K.; Economides, A.A.; Panavou, F.-R. You Look like You’ll Buy It! Purchase Intent Prediction Based on Facially Detected Emotions in Social Media Campaigns for Food Products. Computers 2023 , 12, 88. [Google Scholar] [CrossRef] Arasu, B.S.; Seelan, B.J.B.; Thamaraiselvan, N. A Machine Learning-Based Approach to Enhancing Social Media Marketing. Comput. Electr. Eng. 2020 , 86, 106723. [Google Scholar] [CrossRef] Nuanmeesri, S.; Poomhiran, L.; Sriurai, W. Artificial Intelligence Model of the User Patterns and Behaviors Analysis on Social Media to Become Customers in Smart Marketing. Int. J. Eng. Trends Technol. 2022 , 70, 393–401. [Google Scholar] [CrossRef] Salminen, J.; Mustak, M.; Corporan, J.; Jung, S.-G.; Jansen, B.J. Detecting Pain Points from User-Generated Social Media Posts Using Machine Learning. J. Interact. Mark. 2022 , 57, 517–539. [Google Scholar] [CrossRef] Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A.; et al. Artificial Intelligence (AI): Multidisciplinary Perspectives on Emerging Challenges, Opportunities, and Agenda for Research, Practice and Policy. Int. J. Inf. Manag. 2021 , 57, 101994. [Google Scholar] [CrossRef] Liu-Thompkins, Y.; Okazaki, S.; Li, H. Artificial Empathy in Marketing Interactions: Bridging the Human-AI Gap in Affective and Social Customer Experience. J. Acad. Mark. Sci. 2022 , 50, 1198–1218. [Google Scholar] [CrossRef] Capatina, A.; Kachour, M.; Lichy, J.; Micu, A.; Micu, A.-E.; Codignola, F. Matching the Future Capabilities of an Artificial Intelligence-Based Software for Social Media Marketing with Potential Users’ Expectations. Technol. Forecast. Soc. Change 2020 , 151, 119794. [Google Scholar] [CrossRef] Batta, A.; Kar, A.K.; Satpathy, S. Cross-Platform Analysis of Seller Performance and Churn for Ecommerce Using Artificial Intelligence. J. Glob. Inf. Manag. 2023 , 31, 1–21. [Google Scholar] [CrossRef] Huang, R.; Kim, M.; Lennon, S. Trust as a Second-Order Construct: Investigating the Relationship between Consumers and Virtual Agents. Telemat. Inf. 2022 , 70, 101811. [Google Scholar] [CrossRef] Gkikas, D.C.; Theodoridis, P.K.; Beligiannis, G.N. Enhanced Marketing Decision Making for Consumer Behaviour Classification Using Binary Decision Trees and a Genetic Algorithm Wrapper. Informatics 2022 , 9, 45. [Google Scholar] [CrossRef] Zhang, W.; Sun, L.; Wang, X.; Wu, A. The Influence of AI Word-of-Mouth System on Consumers’ Purchase Behaviour: The Mediating Effect of Risk Perception. Syst. Res. Behav. Sci. 2022 , 39, 516–530. [Google Scholar] [CrossRef] Barykin, S.; Mehta, R.; Verghese, J.; Mahajan, S.; Bozhuk, S.; Kozlova, N.; Vasilievna Kapustina, I.; Mikhaylov, A.; Naumova, E.; Dedyukhina, N. Consumers’ Behavior in Conversational Commerce Marketing Based on Messenger Chatbots. F1000 Res. 2022 , 11, 647. [Google Scholar] [CrossRef] Vernuccio, M.; Patrizi, M.; Pastore, A. Delving into Brand Anthropomorphisation Strategies in the Experiential Context of Name-Brand Voice Assistants. J. Consum. Behav. 2023 , 22, 1074–1083. [Google Scholar] [CrossRef] Adwan, A.; Aladwan, R. Use of Artificial Intelligence System to Predict Consumers’ Behaviors. Int. J. Data Netw. Sci. 2022 , 6, 1223–1232. [Google Scholar] [CrossRef] Li, Z. Consumer Behavior Analysis Model Based on Machine Learning. J. Intell. Fuzzy Syst. 2021 , 40, 6433–6443. [Google Scholar] [CrossRef] Chen, S.; Li, X.; Liu, K.; Wang, X. Chatbot or Human? The Impact of Online Customer Service on Consumers’ Purchase Intentions. Psychol. Mark. 2023 , 40, 2186–2200. [Google Scholar] [CrossRef] Dwivedi, Y.K.; Kshetri, N.; Hughes, L.; Slade, E.L.; Jeyaraj, A.; Kar, A.K.; Baabdullah, A.M.; Koohang, A.; Raghavan, V.; Ahuja, M.; et al. “So What If ChatGPT Wrote It?” Multidisciplinary Perspectives on Opportunities, Challenges and Implications of Generative Conversational AI for Research, Practice and Policy. Int. J. Inf. Manag. 2023 , 71, 102642. [Google Scholar] [CrossRef] Li, M.; Wang, R. Chatbots in E-Commerce: The Effect of Chatbot Language Style on Customers’ Continuance Usage Intention and Attitude toward Brand. J. Retail. Consum. Serv. 2023 , 71, 103209. [Google Scholar] [CrossRef] Kim, W.B.; Hur, H.J. What Makes People Feel Empathy for AI Chatbots? Assessing the Role of Competence and Warmth. Int. J. Hum.-Comput. Interact. 2023 . [Google Scholar] [CrossRef] Marjerison, R.K.; Zhang, Y.; Zheng, H. AI in E-Commerce: Application of the Use and Gratification Model to The Acceptance of Chatbots. Sustainability 2022 , 14, 14270. [Google Scholar] [CrossRef] Trivedi, S.K.; Patra, P.; Srivastava, P.R.; Zhang, J.Z.; Zheng, L.J. What Prompts Consumers to Purchase Online? A Machine Learning Approach. Electron. Commer. Res. 2022 . [Google Scholar] [CrossRef] Ngai, E.W.T.; Lee, M.C.M.; Luo, M.; Chan, P.S.L.; Liang, T. An Intelligent Knowledge-Based Chatbot for Customer Service. Elect. Commer. Res. Appl. 2021 , 50, 101098. [Google Scholar] [CrossRef] Silva, E.S.; Bonetti, F. Digital Humans in Fashion: Will Consumers Interact? J. Retail. Consum. Serv. 2021 , 60, 102430. [Google Scholar] [CrossRef] Guerreiro, J.; Loureiro, S.M.C.; Ribeiro, C. Advertising Acceptance via Smart Speakers. Span. J. Mark.-ESIC 2022 , 26, 286–308. [Google Scholar] [CrossRef] Guo, C. Intelligent Voice System Design for Optimizing E-Business Advertising Rhetoric Based on SVM Algorithm. Comput. Intell. Neurosci. 2022 , 2022, 1944275. [Google Scholar] [CrossRef] Rodgers, W.; Nguyen, T. Advertising Benefits from Ethical Artificial Intelligence Algorithmic Purchase Decision Pathways. J. Bus. Ethics 2022 , 178, 1043–1061. [Google Scholar] [CrossRef] Aljabri, M.; Mohammad, R.M.A. Click Fraud Detection for Online Advertising Using Machine Learning. Egypt. Inform. J. 2023 , 24, 341–350. [Google Scholar] [CrossRef] Schultz, C.D.; Koch, C.; Olbrich, R. Dark Sides of Artificial Intelligence: The Dangers of Automated Decision-Making in Search Engine Advertising. J. Assoc. Soc. Inf. Sci. Technol. 2023 . [Google Scholar] [CrossRef] Sabharwal, D.; Sood, R.S.; Verma, M. Studying the Relationship between Artificial Intelligence and Digital Advertising in Marketing Strategy. J. Content Community Commun. 2022 , 16, 118–126. [Google Scholar] [CrossRef] Shi, B.; Wang, H. An AI-Enabled Approach for Improving Advertising Identification and Promotion in Social Networks. Technol. Forecast. Soc. Chang. 2023 , 188, 122269. [Google Scholar] [CrossRef] Miralles-Pechuán, L.; Ponce, H.; Martínez-Villaseñor, L. A 2020 Perspective on “A Novel Methodology for Optimizing Display Advertising Campaigns Using Genetic Algorithms”. Electron. Commer. Res. Appl. 2020 , 40, 100953. [Google Scholar] [CrossRef] Zhang, Q.; Wu, J.; Zhang, P.; Long, G.; Zhang, C. Collective Hyping Detection System for Identifying Online Spam Activities. IEEE Intell. Syst. 2017 , 32, 53–63. [Google Scholar] [CrossRef] Liu, S.; Yu, Y. Bid-Aware Active Learning in Real-Time Bidding for Display Advertising. IEEE Access 2020 , 8, 26561–26572. [Google Scholar] [CrossRef] Wang, L.; Han, L.; Chen, X.; Li, C.; Huang, J.; Zhang, W.; Zhang, W.; He, X.; Luo, D. Hierarchical Multiagent Reinforcement Learning for Allocating Guaranteed Display Ads. IEEE Trans. Neural Netw. Learn. Syst. 2022 , 33, 5361–5373. [Google Scholar] [CrossRef] Wang, J. Innovation of E-Commerce Marketing Model under the Background of Big Data and Artificial Intelligence. J. Comput. Methods Sci. Eng. 2022 , 22, 1721–1727. [Google Scholar] [CrossRef] Giri, A.; Chatterjee, S.; Paul, P.; Chakraborty, S. Determining the Impact of Artificial Intelligence on ‘Developing Marketing Strategies’ in Organized Retail Sector of West Bengal, India. Int. J. Eng. Adv. Technol. 2019 , 8, 3031–3036. [Google Scholar] [CrossRef] Miklosik, A.; Kuchta, M.; Evans, N.; Zak, S. Towards the Adoption of Machine Learning-Based Analytical Tools in Digital Marketing. IEEE Access 2019 , 7, 85705–85718. [Google Scholar] [CrossRef] Rosa, A.; Bento, T.; Pereira, L.; da Costa, R.L.; Dias, Á.; Gonçalves, R. Gaining Competitive Advantage through Artificial Intelligence Adoption. Int. J. Electron. Bus. 2022 , 17, 386–406. [Google Scholar] [CrossRef] Chang, Y.-T.; Fan, N.-H. A Novel Approach to Market Segmentation Selection Using Artificial Intelligence Techniques. J Supercomput 2023 , 79, 1235–1262. [Google Scholar] [CrossRef] Stone, M.; Aravopoulou, E.; Ekinci, Y.; Evans, G.; Hobbs, M.; Labib, A.; Laughlin, P.; Machtynger, J.; Machtynger, L. Artificial Intelligence (AI) in Strategic Marketing Decision-Making: A Research Agenda. Bottom Line 2020 , 33, 183–200. [Google Scholar] [CrossRef] Bag, S.; Gupta, S.; Kumar, A.; Sivarajah, U. An Integrated Artificial Intelligence Framework for Knowledge Creation and B2B Marketing Rational Decision Making for Improving Firm Performance. Ind. Mark. Manag. 2021 , 92, 178–189. [Google Scholar] [CrossRef] Figure 2. Allocation of the published literature: yearly research publication/growth until July 2023. Figure 4. Lotka’s Law. The solid line represents the actual distribution of publications in the dataset. The dotted line represents the theoretical distribution predicted by Lotka’s Law. Figure 5. Countries of corresponding authors represent collaboration between different countries (multi-country publications, MCP) and collaboration within the same country (single-country publications, SCP). Description Results Main information about data Timespan 2015:2023 Sources (journals, books, etc.) 134 Documents 211 Annual growth rate % 42.5 Document average age 1.83 Average citations per doc 23.85 References 12,691 Document contents Keywords plus (ID) 681 Author’s keywords (DE) 714 AUTHORS Authors 667 Authors of single-authored docs 26 Authors collaboration Single-authored docs 26 Co-authors per doc 3.49 International co-authorships % 32.7 Document types Article 211 Sources Articles Journal of Business Research 10 Applied Marketing Analytics 9 Journal of Retailing And Consumer Services 7 Industrial Marketing Management 6 Australasian Marketing Journal 5 Journal of The Academy of Marketing Science 5 Psychology And Marketing 5 European Journal of Marketing 3 IEEE Access 3 International Journal of Information Management 3 International Journal of Research In Marketing 3 Journal of Brand Strategy 3 Journal of Interactive Marketing 3 Journal of Product And Brand Management 3 Journal of Research In Interactive Marketing 3 Mobile Information Systems 3 Sustainability 3 Technological Forecasting And Social Change 3 Zone Journals Articles % Journals % Articles Multiplier Zone 1 15 71 11.19% 33.65% – Zone 2 50 71 37.31% 33.65% 3.33 Zone 3 69 69 51.49% 32.70% 1.38 Total 134 211 100.00% 100.00% 2.36 Publication (X) No. of Authors (Y) The Proportion of Authors 1 608 0.912 2 50 0.075 3 7 0.01 4 2 0.003 Country Articles Single-Country Publication Multi-Country Publication Frequency Multi-Country Publication Ratio China 34 25 9 0.161 0.265 USA 25 21 4 0.118 0.16 India 15 13 2 0.071 0.133 UK 11 4 7 0.052 0.636 Australia 6 3 3 0.028 0.5 Hong Kong 5 2 3 0.024 0.6 Korea 5 4 1 0.024 0.2 UAE 5 4 1 0.024 0.2 Finland 4 1 3 0.019 0.75 France 4 0 4 0.019 1 Portugal 4 4 0 0.019 0 Canada 3 0 3 0.014 1 Germany 3 3 0 0.014 0 Greece 3 3 0 0.014 0 Italy 3 2 1 0.014 0.333 Mexico 3 1 2 0.014 0.667 Netherlands 3 1 2 0.014 0.667 Spain 3 2 1 0.014 0.333 Switzerland 3 2 1 0.014 0.333 Cluster Callon Centrality Callon Density Rank Centrality Rank Density Cluster Frequency AI/ML Algorithms 6.935962368 70.96509298 9 5 223 Social media 3.151262626 58.77525253 8 3 32 Consumer Behavior 1.5 105 6 9 10 E-Commerce 3.131944444 78.90946502 7 7 32 Digital Advertising 1.048611111 54.05092593 5 2 34 Budget Optimization 1 63.88888889 4 4 7 Competitive Strategies 0.395833333 72.91666667 2 6 14 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality machine learning 64 1055.820511 0.006024096 0.121646468 commerce 34 768.4475448 0.005882353 0.070993813 sales 16 198.3310565 0.005025126 0.037507544 consumer behavior 14 236.1942357 0.005025126 0.023596581 decision making 10 249.171953 0.005235602 0.024742808 big data 8 187.7675854 0.005208333 0.022524782 data mining 6 210.0452139 0.005263158 0.018984255 decision support systems 6 76.34349747 0.004926108 0.015931389 forecasting 6 66.51589138 0.004672897 0.015440563 marketing strategy 6 57.67243825 0.004807692 0.014109938 strategic planning 6 72.06109004 0.004901961 0.014914574 customer satisfaction 4 44.00446478 0.004694836 0.010154666 information analysis 4 49.51062728 0.00462963 0.011547683 data handling 3 10.37739132 0.004273504 0.00761223 marketing models 3 24.11344078 0.004672897 0.009468987 potential customers 3 31.80981655 0.004524887 0.010737864 precision marketing 3 22.86960343 0.004291845 0.010150383 sentiment analysis 3 37.8349971 0.004926108 0.008634345 AI technologies 2 11.29912198 0.004651163 0.005357946 customer profiles 2 3.328993004 0.004032258 0.004901569 customer segmentation 2 13.33416055 0.004219409 0.00555014 decision trees 2 10.94361999 0.004166667 0.007045056 digital technologies 2 22.21773731 0.004926108 0.006665199 knowledge management 2 32.56890359 0.005025126 0.008251596 marketing efficiencies 2 9.040698082 0.004347826 0.005394081 marketing operations 2 10.8076371 0.004784689 0.006175678 online reviews 2 13.24157758 0.004219409 0.005098014 product and services 2 26.74020362 0.004950495 0.008448213 product planning 2 12.00061104 0.004273504 0.005502575 risk assessment 2 40.67836531 0.004901961 0.007026794 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality social media 11 200.9024374 0.005050505 0.028361704 social media marketing 5 21.49512311 0.004484305 0.011691877 information management 4 79.79239658 0.005181347 0.009814957 intelligent systems 3 54.22078537 0.005 0.008588241 online systems 3 48.35029125 0.004854369 0.009983508 data analytics 2 6.264163348 0.004273504 0.006918915 managerial implications 2 21.49299009 0.004464286 0.006461095 products and services 2 41.57412184 0.004830918 0.007209013 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality consumer 2 94.44152168 0.004761905 0.009413763 human 2 106.189656 0.004975124 0.008105341 language processing 2 1.460207337 0.003636364 0.007589943 natural language processing 2 1.460207337 0.003636364 0.007589943 trust 2 5.60828578 0.004081633 0.005832891 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality electronic commerce 9 159.2476837 0.005319149 0.022089932 chatbots 3 8.072186379 0.004587156 0.003915811 e-commerce 4 122.6998775 0.005263158 0.013758074 marketing activities 3 67.80234082 0.004484305 0.009957807 purchase intention 3 24.5466894 0.004444444 0.011137783 consumer purchase 2 10.56621641 0.004545455 0.008461717 machine learning approaches 2 26.16709662 0.004651163 0.007037929 natural language processing systems 2 44.71454766 0.004694836 0.004845591 purchasing 2 10.56621641 0.004545455 0.008461717 websites 2 82.79793797 0.004716981 0.005511432 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality advertizing 6 125.0898572 0.005154639 0.016861204 advertising 4 102.1836488 0.004975124 0.013171544 marketing communications 3 16.69280952 0.004405286 0.005786586 reinforcement learning 2 62.72847676 0.005154639 0.006428031 search engines 2 4.541524578 0.004166667 0.005586297 advertising campaign 2 38.74213249 0.004201681 0.005220361 online advertising 2 76.30294395 0.004405286 0.007368908 display advertisings 2 13.36106278 0.003636364 0.007235011 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality optimizations 4 64.48512097 0.004672897 0.010836125 optimization 3 66.44964344 0.004255319 0.007581942 budget control 2 8.772481114 0.003389831 0.006525159 click-through rate 2 13.36106278 0.003636364 0.007235011 Keyword Frequencies Btw Centrality Clos Centrality PageRank Centrality competition 4 58.2277428 0.004504505 0.00980697 classifiers 2 34.1691082 0.004524887 0.005263117 competitive advantage 2 3.89417657 0.004115226 0.005554099 planning 2 7.508933566 0.00390625 0.003154914 profitability 2 14.74597559 0.003968254 0.005656593 sustainable development 2 3.708766234 0.003508772 0.005045295 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Share and Cite MDPI and ACS Style
Ziakis, C.; Vlachopoulou, M.
Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review. Information 2023 , 14 , 664.
https://doi.org/10.3390/info14120664
AMA Style
Ziakis C, Vlachopoulou M.
Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review. Information . 2023; 14(12):664.
https://doi.org/10.3390/info14120664
Chicago/Turabian Style
Ziakis, Christos, and Maro Vlachopoulou.
2023. “Artificial Intelligence in Digital Marketing: Insights from a Comprehensive Review” Information 14, no. 12: 664.
https://doi.org/10.3390/info14120664

Be the first to comment

Leave a Reply

Your email address will not be published.


*